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1 Introduction

Video models such as X-CLIP (Ni et al., 2022) are specialized in action recognition but are primarily
driven by appearance-centric signals (objects, background, coarse pose). In contrast, humans can
often recognize actions from skeletal motion alone. We ask whether this human-interpretable signal,
joint motion, can act as a compact teacher to improve a larger video model like X-CLIP.

We encode each frame as a 51-D motion vector: for each of the 17 COCO joints (Ji et al., 2022), we
compute 2-D velocities and their speed. A small (≈1M-parameter) motion-only network is trained
on UCF-101 to predict clip-level action distributions, and its soft labels supervise an X-CLIP student
alongside ground-truth labels. We also compare against a more expensive baseline where an X-CLIP
teacher supervises an X-CLIP student.

In this work, we demonstrate that a compact, human-interpretable motion network can act as an
effective teacher for a large video model.

2 Related Work

Recently, there has been an interest in moving beyond pose as an intermediate representation. Zhao
et al. explore the use of pose as a weakly supervised signal for action segmentation, improving
perception tasks by treating pose as a structured weak prior (Zhao et al., 2025). However, Zhao et al.
focuses on pose itself rather than on motion. Honing in on motion enables us to learn an interpretable
emergent property of pose that captures how joints evolve over time. As such, we draw inspiration
from teacher–student (TS) motion-derived expert to supervise larger vision models.

Specialist models trained rapidly alongside larger backbones have shown value in knowledge distilla-
tion beyond one-hot labels (Hinton et al., 2015). Huang et al. build on this idea with MoCLIP-Lite
(Huang et al., 2025), a lightweight supervised motion-vector network that supplies motion-based
heuristics to a CLIP-style video recognizer. MoCLIP-Lite supports the trend that cheap motion cues
can significantly improve CLIP-based video recognition.

Beyond Huang et al., we constrain ourselves to a human-interpretable pseudo-label pipeline in which
joint velocities and speeds are explicitly modeled as the core supervisory signal for a small motion
expert. Rather than fusing motion features at the representation level, we use pose-derived motion to
train an explicit motion teacher and distill its predictions into a larger X-CLIP student, aligning the
learning signal with human-understandable notions of action and motion.

3 Dataset and Features

UCF-101 Dataset: In order to assess the accuracy of our TS models in recognizing everyday actions,
we evaluate on UCF-101 (Soomro et al., 2012). UCF-101 (Soomro et al., 2012) contains 13,320
videos from 101 action classes at 320 × 240 and 25 FPS. We use the official split (60/10/30%
train/val/test) and apply our weak supervision pipeline to all train and val clips.
Keypoint feature extraction: In order to extract the 2-D keypoints, we first use RT-DETR on full
frames to obtain person bounding boxes before running the pose estimation (Lv et al., 2024) (Zhao
et al., 2023). Given each detected person’s bounding box, we apply a lightweight pose extractor being
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ViTPose as our keypoints processor (Xu et al., 2022). This output serves as the basis for computing
the speed features which informs our motion pseudo label teacher.

4 Methods

Our pipeline consists of three stages: (i) converting each video into a body-part motion vector; (ii)
training the teacher models; and (iii) training a student model supervised by the teacher model.
All methods rely on the X-CLIP base model with patch-size 16 as a frozen feature extractor on
32 uniformly sampled frames per video (25 FPS) as a student model (Ni et al., 2022). X-CLIP is
video–text model with a ViT-B/16 backbone that applies contrastive learning to videos (Ni et al.,
2022).

4.1 Deriving Motion Vectors From 2-D Poses

4.1.1 Pose Extraction

For each frame we first run RT-DETR to obtain person bounding boxes (Zhao et al., 2023) (Lv et al.,
2024), then apply ViTPose within each box to obtain 17 COCO joints (Xu et al., 2022). Let

K(p)
n ∈ R17×2, C(p)

n ∈ R17

denote the keypoint locations and confidences for person p in frame n. We keep only the person p⋆:

p⋆ = argmax
p

1

17

17∑
j=1

C
(p)
n,j ; Kn := K(p⋆)

n ; Cn := C(p⋆)
n

4.1.2 Confidence Gating

Following Tang et al. (Tang et al., 2022), we normalize 2D skeletons before computing motion. We
apply three simple gates: (i) multi-person: select p⋆ as above; (ii) per-joint masking: joints with
Cn,j < 0.8 are marked invisible; (iii) minimal visibility: frames with fewer than 9 visible joints are
discarded. Note, discarding is equivalent to setting rows to NaN.

4.1.3 Translation and Scale Invariance

We then make each valid frame translation- and scale-invariant (Tang et al., 2022). For translation,
we subtract the origin point on for each joint in each frame. We denote on as the midpoint of the
shoulders and normalize:

K ′
n(j, :) = Kn(j, :)− on.

For scale, we compute a torso distance st by computing the distance between the shoulders (Tang
et al., 2022).

K ′
n(j, :) := K ′

n(j, :)/st Frames with st < ϵ = 8px are discarded

4.1.4 Extracting Motion Vectors

Let K ′
n,j denote the normalized 2-D COCO joint (Ji et al., 2022) location for joint j in frame n after

applying the joint-confidence gating. For each available joint we compute velocities via a centered
frame difference, giving vj ∈ R2 for both (x, y) across all frames that were not discarded. From the
velocities, we derive the speed sj ∈ R for each body part over frames n = 2, . . . , N − 1. Ultimately,
this yields an aggregated motion vector xn ∈ R51 per frame which forms the basis of our motion
derived pseudo labeler.

4.2 Training Teacher Models

To evaluate motion as an interpretable supervisory signal, we compare two teacher–student setups that
differ in both teacher size and signal. We deliberately do not match the number of ground-truth labels
seen by each teacher; instead, our goal is to test whether a compact motion teacher can substitute
for a larger X-CLIP-based teacher for distillation. The motion teacher is trained on pose-derived
motion features, while the X-CLIP teacher is trained in a controlled k-shot setting on frozen X-CLIP
embeddings, and both are then used to produce soft labels for the student training stage (Section 4.3).
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4.2.1 Motion-Derived Teacher

We model each video as a bag Bi = {xit}Ti
t=1 of per-frame motion descriptors xit ∈ R51 with a

single clip-level label yi ∈ {1, . . . , C}, where i is the bag index and t is the frame. The motion
teacher learns a clip-level distribution

f(Bi) = pθ(y | Bi) ∈ ∆C−1

in a multiple instance learning (MIL) setting, where only clip-level labels are available and the model
must learn which frames are informative (Wang et al., 2017).

Instance encoding: Each instance encodes per-frame motion statistics (joint velocities, speeds,
visibilities). Each motion vector xit ∈ R51 is projected to a hidden space of dimension H=256 using
a linear layer, layer norm, ReLU, and dropout. We then process the per-frame motion embeddings
with an L-layer Transformer encoder with sinusoidal positional encodings (Vaswani et al., 2023).

Gated attention MIL pooling: To obtain a single bag representation, our MIL pooling follows the
gated attention operator (Ilse et al., 2018) over the instance embeddings {hit}:

vit = tanh(V hit), uit = σ(Uhit), git = vit ⊙ uit,

ait = w⊤git, αit =
exp(ait)∑

t′:mit′=1 exp(ait′)
, ri =

Ti∑
t=1

αit hit ∈ RH ,

where mit masks padded time steps. Gated attention ensures that the motion model focuses on a
subset of discriminative frames while down-weighting neutral or ambiguous motion frames.

Classifier, training, and soft labels: We feed ri to a small MLP classifier:

hclsi = Dropout(ReLU(W1ri + b1)) , zi =W2h
cls
i + b2,

and obtain clip-level probabilities pθ(y | Bi) = softmax(zi). The motion teacher is trained with
cross-entropy and label smoothing (with ε = 0.1) (Szegedy et al., 2015). After training, we use
pθ(y | Bi) as soft labels for all clips; these motion-based soft labels serve as an interpretable
teacher signal for the student model and let us compare a compact pose-motion teacher to a larger
X-CLIP-based teacher in distillation.

4.2.2 X-CLIP Derived Teacher

We follow the X-CLIP training protocol (Ni et al., 2022). For training, we apply standard video
augmentations: resize (short side 256), random 224 × 224 crop, horizontal flip (probability 0.5),
color jitter, occasional grayscale, and ImageNet statistics normalization. For validation and test, we
use resize (short side 256), center crop, and the same normalization.

To train this teacher, we define a K-shot supervised subset L containing NL = K × 101 labeled
videos with K clips per UCF-101 class. We train a linear multinomial logistic regression classifier
(Bishop, 2006) with weight matrix W ∈ R101×512 and bias b ∈ R101:

min
W,b

[
1

NL

NL∑
i=1

ℓCE(W ϕ(xi) + b, yi) +
1

2
∥W∥2F

]
, ℓCE(z, y) = − log

(
ezy∑
k e

zk

)
.

We optimize this objective with L-BFGS and apply early stopping on validation accuracy, requiring
an improvement of at least δ = 10−3 over 20 iterations.

4.3 Training Students on Teacher Pseudo Labels

To incorporate weak motion-based supervision without degrading the primary classifier, we use a
multi-head architecture on top of the frozen X-CLIP backbone. For each video xi, we extract a 512-D
embedding ϕ(xi) and attach two linear heads: a supervised head trained on the sparsely labeled set
L, and a weak head trained on the densely pseudo-labeled set Lweak (Hinton et al., 2015). The heads
produce

qsup
i = softmax(Wsupϕ(xi) + bsup) , qweak

i = softmax(Wweakϕ(xi) + bweak) .
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The supervised head is trained with cross-entropy on ground-truth labels yi for i ∈ L, while the weak
head matches the teacher distribution πi ∈ ∆C−1 (from either the motion MIL teacher or the X-CLIP
teacher) (Hinton et al., 2015). We use

Lsup = − 1

|L|
∑
i∈L

log qsup
i,yi
, Lweak = − 1

|Lweak|
∑

i∈Lweak

C∑
c=1

πi,c log q
weak
i,c ,

and minimize the weighted sum L = αLsup +βLweak, where α and β control the relative contribution
of ground-truth and teacher supervision (Zhao et al., 2025).

4.4 Evaluation Bounds

Lower Bound: Zero-Shot Classification: We use X-CLIP in a zero-shot setting as a lower bound.
For each class, we define M = 5 text prompts (e.g “a video of a person [action]”) and obtain 512-D
ℓ2-normalized text embeddings tc,m via X-CLIP’s text encoder. Class prototypes ψ and predictions
ŷ are computed as

ψ(c) = norm

(
1

M

∑
m

tc,m

)
, ŷ = argmax

c
ϕ(x)⊤ψ(c).

Upper Bound: Full-Supervised Linear Probe: We train a logistic regression classifier on all labeled
training videos and apply the augmentations above on frozen X-CLIP features. This approximates an
upper bound for linear probes on frozen X-CLIP features, since it uses all available labels.

5 Experiments / Results / Discussion

We evaluate our motion-based teacher student (TS) approach on UCF-101 using the official
train/val/test splits. Our comparisons in Table 1 include: (i) zero-shot baselines (Random, CLIP,
X-CLIP); (ii) supervised X-CLIP linear probes with k ∈ {2, 8}; (iii) our motion-only teacher alone;
(iv) our Motion TS setup where the motion teacher provides soft labels to an X-CLIP student; and (v)
an X-CLIP TS baseline where an X-CLIP-derived teacher supervises the same X-CLIP student. We
also report MoCLIP-Lite and fully supervised X-CLIP results from prior work as reference upper
bounds.

5.1 Results
UCF-101 Top-1 Accuracy (%)

Method Top-1

Zero-shot
Random Guessing 0.99
CLIP 64.5
X-CLIP 72.0

Few-shot X-CLIP (k = 2) 86.73
X-CLIP (k = 8) 94.3

Motion TS (ours)
Raw Motion 79.35
Motion (teacher) + X-CLIP (k = 2) 91.12
Motion (teacher) + X-CLIP (k = 8) 94.7

X-CLIP TS (ours) X-CLIP (k = 2 teacher) + X-CLIP 95.72
X-CLIP (k = 8 teacher) + X-CLIP 96.2

Upper bound MoCLIP-Lite 89.2*
Fully supervised X-CLIP 98.2**

Table 1: Top-1 accuracy on UCF-101. Teacher–student (TS) variants outperform the MoCLIP-Lite
motion baseline at a similar parameter scale. Params (M): ours ≈1, X-CLIP ≈200, MoCLIP-Lite
≈0.97. * (Huang et al., 2025); ** (Yang et al., 2024).

Zero-shot performance sets a relatively strong lower baseline (CLIP: 64.5, X-CLIP: 72.0), but it
does not approach the high-accuracy regime. In the low-parameter setting, our Motion TS models
(∼1M trainable parameters in the motion teacher) outperform MoCLIP-Lite (∼0.97M), reaching
91.1 (at k=2) and 94.7 (at k=8) versus the 89.2 reported by Huang et al. (2025). This comparison
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is not fully apples-to-apples: our student is a stronger video backbone (X-CLIP) and is allowed k
labeled examples per class. MoCLIP-Lite reinforces the notion that cheap motion cues can boost
large models; our additional gains suggest that turning pose-derived motion into an explicit teacher
for a video–language student, rather than just an extra feature stream, can further improve accuracy
while keeping the added learnable component compact.

Compared to the motion teacher, the X-CLIP teacher uses a much larger backbone and achieves
higher top-1 accuracy (up to 96.2% vs. 94.7%). However, it is considerably more expensive to train.
Our results thus position the motion teacher as a practical alternative when computational or memory
budgets preclude training a full X-CLIP teacher.

5.2 Visualization Experiments

We ran two visualization experiments to compare X-CLIP and our motion-only MIL teacher: (A)
class-level error structure and (B) feature geometry (Fig. 1).

(a) Top-15 class confusions. (b) t-SNE feature geometry.

Figure 1: Visualization experiments for X-CLIP and the motion MIL teacher. (A) Row-normalized
confusion matrices for the top-15 most confused classes. (B) t-SNE of 2,000 training clips in the
X-CLIP (512-D) and motion MIL (256-D) feature spaces.

A. Error structure. X-CLIP confuses actions that share scene appearance or objects (e.g
BandMarching/MilitaryParade) indicating a strong reliance on background rather than fine-
grained motion. In contrast, our motion teacher confuses actions with similar joint dynamics (e.g.
ApplyEyeMakeup/ApplyLipstick) despite visual context differences. Both models struggle on set-
tings (e.g. Kayaking/Rafting), where 2D pose is noisy and motion patterns are semantically similar.
These confusion patterns support our claim that the compact motion teacher captures information
complementary to X-CLIP and improves the student when used for distillation.

B. Feature geometry. The t-SNE plots show broad, minimally overlapping X-CLIP clusters,
consistent with higher top-1 accuracy Table 1). The motion space gives tighter clusters for motion-
driven classes (JumpRope and PushUps), but has a weaker separation for fine-motor activities
(Typing and Haircut). Together these visualizations support our claim that the motion teacher
provides complementary supervision to X-CLIP, but does not cluster features in the same way.

6 Conclusion / Future Work

Ultimately, we see that a compact, human-interpretable motion teacher can improve the performance
of a large video model on action recognition. Using a pose-derived joint-velocity and speed vector,
we train a ∼1M-parameter MIL-based motion network that provides soft pseudo-labels to an X-CLIP
student. On UCF-101, this Motion TS setup outperforms prior motion-based baselines such as
MoCLIP-Lite in a comparable parameter regime and significantly improves few-shot X-CLIP when
k is small.

Analyses of confusion matrices and feature geometries suggest that the motion teacher captures a
complementary, action-centric representation focused on joint dynamics, while X-CLIP remains
more appearance-driven. This complementarity highlights motion-based teachers as a practical, inter-
pretable source of supervision that can deliver competitive few-shot gains with far fewer additional
parameters than a full-scale video teacher. In future work, we plan to extend our framework to
3D meshes and more challenging action datasets. In addition, we can explore video segment level
classification rather than clip-level labeling.
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7 Contributions

• Ayaan Malik: Designed our motion model, and set up our evaluation pipeline. Ayaan
contributed to the writing of sections 4.2, 4.4, 5.2 & 6

• Miko Rimer: Ran data pre-processing: RT-DETR + ViTPose preprocessing and 2D skeleton
normalization. Miko contributed to the writing of sections 2, 3, 4.1, 5.1 & 6

• Yanav Lall: Implemented the X-CLIP as a teacher and weak supervision pipeline. Yanav
contributed to the writing of sections 1, 4.2, 4.3, 4.4, 5 & 6
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