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Abstract

We present a two-dimensional foundational framework for mental health assess-
ment that leverages continuous valence-arousal (VA) coordinates extracted from
natural language as a universal affective marker. Rather than training disorder-
specific models, we developed a generalizable VA regressor using EmoBank and
GoEmotions datasets, with our optimal RoBERTa architecture achieving a 0.0759
MAE and 0.82 valence correlation. We later demonstrate cross-disorder applica-
bility by augmenting clinical transcripts with VA coordinates for both depression
(PHQ-8) and PTSD (PCL-5) prediction tasks on the E-DAIC dataset. VA-enhanced
prompts yield consistent improvements across model paradigms: 12.2% MAE
reduction in supervised fine-tuning for depression, and 10.7% accuracy gains for
PTSD classification. Crucially, our temporal trajectory analysis reveals that de-
pressed individuals exhibit characteristic negative valence excursions and increased
emotional volatility throughout clinical interviews, while PTSD-positive partici-
pants show heightened arousal variability. Unlike existing approaches that target
single conditions, our VA framework provides a foundational affective substrate
that is generalizable across mental health domains, enabling real-time emotional
monitoring through passive language analysis without requiring disorder-specific
fine-tuning.



1 Introduction

Nearly 1 billion people worldwide suffer from mental disorders (Global Burden of Disease 2017
Collaborators,, |2018). This immense global burden — worsened by recent crises and a shortage of
mental health providers (Garriga et al.,[2022)) — underscores the urgent need for improved diagnostic
and monitoring tools (Garriga et al.,|2022)). However, clinicians still rely heavily on self-administered
questionnaires, which give only static snapshots of a patient’s condition and lack temporal sensitivity
to fluctuations in mental state (Zimmerman, 2024). Although these approaches have, from an
epidemiological level, enabled clinicians to inquire about certain disorders on which the patient
screens positive, they are limited in their utility for timely intervention as they are self-administered
(Zimmermanl, [2024).

Natural language remains a principal component of mental health assessment (Wang et al., [2024]),
and as a result recent advances in machine learning have increased the ability to develop and deploy
digital mental health models. However, current approaches have notable limitations, as many models
are domain specific, resulting in models that are narrowly tuned to particular diagnoses (Ji et al.,[2021)
(Wang et al.| |2024). This limits their generalizability across the diverse spectrum of mental health
conditions, as they are pretrained on specific disorders (Wang et al., |2024). Similarly, computational
emotion models, such as GPT-4, identify situational context by computing how specific textual
components may evoke particular emotions — for example, classifying the emotion grateful from
text (Tak and Gratchl 2024)). Such models often ignore the established view that emotions vary
along continuous dimensions of valence (sad to cheerful) and arousal (quiet to active) (Bradley and
Lang] [1994) (Jia et al.| 2024)). Moreover, modeling emotion using discrete dictionaries introduces
inherent bias, as it represents mental state through classifications of specific emotions selected for
their association with symptom pathology, rather than capturing affect on a standardized, continuous
scale across a diverse range of emotional states (Jia et al., [2024). Although certain models like
Garriga et al.|(2022)’s algorithm reduced crisis risk in 64% of cases, they rely on structured electronic
health record data and frequent patient contact, making them impractical outside specialized settings
where continuous clinical records are available. In summary, existing solutions either lack real-time
sensitivity, broad applicability, or the ability to represent emotional states holistically.

To address this gap, we propose a novel approach to use a foundational emotional metric derived
from a text input that can serve as a proxy for mental state. We introduce a language-based metric of
emotional state — defined by valence and arousal (VA) — as a compact, interpretable two-dimensional
representation of mental health. From a broader perspective, our model can infer a range of continuous
metrics from any form of natural language, offering a passive and scalable approach to real-time
monitoring of affective states. This foundation supports proactive mental health care by continuously
tracking emotional trajectories, moving the field beyond episodic check-ins toward early digital-
detection and prevention in a wide range of mental health conditions.

2 Related Work

Most existing text-based mental health models are task-specific, built to detect one single-granular
issue (e.g., depression or suicide risk) in a single data domain (such as therapy transcripts or
Reddit forums). For example, |Sadeghi et al.| (2024)’s convolutional neural network detects early
depression symptoms from text, audio and video input, using a fine-tuned ROBERTa (Pourkeyvan
et al.,[2024) transformer models (DepRoBERTa) to perform feature extraction of depression from text.
Similarly, |Pourkeyvan et al.|(2024)’s "Mental BERT was developed based on posts containing mental
health-related information collected from Reddit and is based on BERT-Base”. Current evaluation
benchmarks for mental health prediction are limited; however, the Extended DAIC-WOZ (E-DAIC)
corpus serves as a relevant silver-standard reference (Gratch et al.| 2014) (Ringeval et al.,[2019). It
has been noted that that E-DAIC may overestimate performance due to the presence of gender bias
and interviewer prompts that inadvertently simplify assessments (Burdisso et al.||2024)). Nevertheless,
the E-DAIC dataset does offer a well—structured benchmark widely utilized across numerous studies
over time (Sadeghi et al., |2024). Previous approaches have primarily leveraged this dataset to predict
depression severity using discrete labels based on the PHQ-8 (ranging from 0 to 24). Because these
systems are fine-tuned for a single context and provide only discrete scores, they fail to capture
deeper insights into an individual’s underlying emotional state beyond the depression prediction.
Recent work has attempted to enhance PHQ-8 prediction accuracy by explicitly integrating topic-wise



emotional tendencies, like |Guo et al| (2024)’s method to predict emotional trajectories of each
interview segment with emotionally polarized prompts, think postivie or negative. To our knowledge,
there is yet to be a model that can broadly capture mental state across multiple benchmarks (think a
unified model to capture PHQ-8 and PTSD severity from the E-DAIC).

Our work addresses these gaps by learning a generalizable affective representation as a foundation.
We first train our model within a two-dimensional VA space using similar methods from [Mitsios
et al.| (2024) and Jia et al.| (2024)’s approaches by using large-scale emotion datasets (EmoBank
and GoEmotions). The result is an initial VA prediction model that is explicitly in a foundational
dimensions that captures human affect. We then explored multiple approaches for incorporating this
VA context to enhance the detection of PHQ-8 scores, and subsequently PTSD symptoms, from the
E-DAIC dataset, measuring improvements using mean absolute error (MAE).

3 Approach

Our approach was in two parts: 1) building a regressor model that can infer VA from text, 2) evaluating
the utility of our VA regressor for tracking mental state by inputting VA-labelled clinical transcripts
into promptable foundation models and predicting scores of depression and PTSD.

3.1 Valence-Arousal Prediction

We first developed a regressor model that predicts valence-arousal (VA) associated with text. We
evaluated three approaches: 1) GPT 04-mini with zero-shot prompting, 2) RoOBERTa with emotional
context conditioning, and 3) RoBERTa for direct VA regression.

3.1.1 Base GPT

This involved GPT-04-mini with zero-shot prompting, the task being to predict VA scores from text.
Since we planned to input text-VA pairs to GPT models for the second part of our approach, we
wanted to evaluate if GPT could be used end-to-end for both VA and mental health score prediction.

3.1.2 RoBERTa Direct for VA Regression

We sought to train a VA regressor model based on a large pre-trained language transformer. We
selected ROBERTa as the pre-trained model due to it being encoder-only, lighter in model parameters,
and open-source allowing us directly optimize for the VA task.

We considered a range of architectures with fully-connected layers stacked on top of the encoder
and a final tanh to project to VA in the range [-1, 1]. The best performing architecture is in Figure 1
(below).
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Figure 1: Direct VA Regression Model

3.1.3 RoBERTa with Emotion Context

Given that VA describes emotional state, we hypothesized that initially fine-tuning a large transformer
model to understand emotion classes could enhance the model’s ability to learn the VA prediction
task downstream. For our emotion-aware transformer, we used the model presented by |[Kashyap
(2024) which consists of a ROBERTa encoder fine-tuned on the GoEmotions dataset (mapping of
text to 28 discrete emotion labels). We repeated the authors’ training procedure and achieved similar
performance of 0.74 macro F-1 score. The model architecture is shown in Figure 2 (below).

Next, we added fully connected layers and a final projection layer on top of the 768 — 256 layer
trained on GoEmotions (Figure 3, below). Initializing with the model weights from GoEmotions



training, we trained this extended architecture for the VA prediction task. To initially preserve
the emotion context from training on GoEmotions, we started with a frozen RoBERTa encoder
and 768 — 256 layer, which we unfroze after validation performance had plateaued to push to an
optimum.

RoBERTa
p Fully Connected Relu Fully Connected
Pretrained Encoder . _ X Sigmoid
[ [CLS] Token ’ '[ Layer: 768 to 256 ’ " Dropout w/ p=0.3 Layer: 256 to 28 ]_-

Figure 2: RoBERTa model fine-tuned on GoEmotions as presented by [Kashyap|(2024)
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Figure 3: Extended RoBERTa model for VA regression task

3.2 Prediction of depression and PTSD scores from text + VA as context

For this part, we evaluated the utility of VA for mental health assessment. Using our best model
for VA prediction, we performed inference of VA for each line of psychiatric clinical transcripts,
then we inputted the transcripts with their VA labels to GPT models to predict scores of PHQ-8
(depression) and PCL-5 (PTSD) separately. The prompt for the GPT models stated the prediction
task and included the full clinical transcript labelled with inferred VA. We evaluated three GPT-based
approaches for predicting PHQ-8 and PCL-5 scores.

3.2.1 Base GPT with zero-shot prompting

This baseline approach used GPT-40-mini without training examples, with structured prompts
instructing the model to predict mental health scores from VA-annotated transcripts. This tests
whether foundation models can inherently utilize continuous affective signals for clinical assessment.

3.2.2 AutoCoT

We hypothesized that by providing GPT few shots of VA-labelled transcripts and ground-truth PHQ-
8/PCL-5 scores, the model could learn in-context how VA might map to mental health assessment.
As few shots, we used transcripts from the E-DAIC training set. Following the AutoCoT framework,
we passed few shots to a separate GPT-04-mini prompted with the following format:

Q: [Reasoning instruction]
A: [Zero-shot Generated rationale]. Therefore, the answer is
[Ground truth PHQ-8].

Our goal with AutoCoT was to generate rationales of few shots and guide the model to perform
structured reasoning. At inference time, we chained formatted demos of few shots with patient
transcripts and tasked the model to predict PHQ-8/PCL-5 scores.

3.2.3 Supervised Fine-Tuning of GPT

We performed fine-tuning with the OpenAl API using the full labeled E-DAIC training set. The
API performs parameter-efficient fine-tuning of pre-trained GPT weights, using entropy loss on the
predicted tokens (in our case PHQ-8/PCL-5 scores). Our hypothesis was that, by increasing the
number of examples seen and explicitly updating model weights, this approach could learn more
nuanced patterns between VA and mental health assessment.



3.3 Datasets

3.3.1 GoEmotions

GoEmotions (Demszky et al., |2020) contains 58k curated Reddit comments in popular English,
annotated by human raters with 27 fine-grained emotion labels. We used GoEmotions to fine-tune
RoBERTa and enhance downstream fine-tuning for VA prediction.

3.3.2 EmoBank

EmoBank jackksoncsie| (2022) is a corpus of 10k English sentences manually annotated with con-
tinuous Valence-Arousal-Dominance (VAD) scores. We used EmoBank to train and evaluate our
RoBERTa-based VA regressors.

3.3.3 E-DAIC WOZ

The Extended Distress Analysis Interview Corpus - Wizard of Oz (E-DAIC) (Gratch et al.| (2014)
Ringeval et al.|(2019)) is a multi-modal dataset of clinical interviews in which participants responded
to scripted prompts. Participants are labelled with scores on self-administered PHQ-8 and PCL-5
assessments for depression and PTSD, respectively. E-DAIC is a gold-standard dataset for establishing
benchmarks in automated mental health assessment. We used the text modality of interviews to
evaluate text-to-depression and text-to-PTSD predictions using GPT.

4 Experiments

4.1 Experiments on RoOBERTa-based VA prediction

Mean absolute error (MAE) was used to evaluate predictions of VA. Lower MAE indicates more
accurate predictions in the two-dimensional VA space.

Experiments on training hyperparameters: We initially trained the model with a frozen RoOBERTa
encoder, using a learning rate of 3 x 1072, batch size of 16, and 20 epochs. Since both training and
validation MAE plateaued early, we introduced dynamic unfreezing of the encoder after a number
of epochs if validation MAE failed to improve by more than a chosen threshold. We experimented
with varying patience to unfreezing and thresholds for MAE improvement. This strategy was able
to reduce MAE in subsequent epochs but eventually led to overfitting, as evidenced by decreasing
training MAE and increasing validation MAE, likely because unfreezing exposed a large number of
parameters that began fitting to noise in the EmoBank data. To counter this, we experimented with
lower learning rates and gradient clipping post-unfreezing, which produced the best training regime
across model variants.

Experiments on model architectures: We considered a range of architectures. Specifically, we
experimented with (1) the number of fully connected (FF) layers appended to the RoOBERTa encoder,
(2) the dimensionality of the last hidden layer (32, 64, 128, 256), and (3) whether to use a single model
or separate models to predict valence and arousal. For both the emotion-aware and base ROBERTa, the
best performance was achieved with three FF layers and a hidden size of 128. Interestingly, separate
models for valence and arousal resulted in higher overall MAE, suggesting that joint prediction
benefits from shared representations.

4.2 Prompt-Length Sensitivity in PHQ-8 Prediction

Large prompts can obscure clinically salient cues (Levy et al.,|[2024). We experimented with four
strategies to compress transcripts Across all settings (see [B)).

Exp. 1: Transcript Summarization. We tasked GPT to summarize transcripts, specifically keeping
clinically salient lines (with sentence-by-sentence VA) and condensed the rest (with average VA) (see
[Cl and[D)). Both base and AutoCOT models showed higher MAE overall, suggesting that summary
noise distorted both rationales and final predictions.

Exp. 2: Length-Based Pruning. We pruned transcripts by dropping utterances shorter than the
transcript’s mean line length. The result (see[E) was that MAE increased, indicating that even brief
replies (e.g. "I'm tired", or "not really") may encode important depressive cues.



Exp. 3: VA-Based Pruning. We removed lines outside of the 25-75"-percentile VA range for
patients with depression or PTSD (see, [F). Performance again declined, which suggests that dynamics
of VA rather than extremes might be interpreted by GPT-based models.

Exp. 4: Number of AutoCoT Demos. We varied the number of in-context demos in AutoCOT (2,
4, and 6 demos). Interestingly, increasing the number of demos did not enhance performance, except
in the case of length-pruned transcripts (see, [G) where demos were likely recovering partially lost
context.

5 Results and Discussion
5.1 Valence-Arousal Prediction

Table 1: Performance of Valence-Arousal prediction models on EmoBank test set

Metric GPT-04-mini RoBERTa w/ Emotional Context RoBERTa Direct for VA
MAE 0.197 0.0792 0.0759
Valence Pearson 0.789 0.7893 0.8201
Arousal Pearson 0.429 0.5479 0.5748

We evaluate performance with test-set mean absolute error (MAE) and the Pearson correlation between
predicted and gold valence—arousal (VA) scores. The base RoOBERTa regressor attains the best mean-
squared error (MSE = 0.0759 in the [—1, 1] VA space) and is therefore carried forward in subsequent
mental-health experiments. Its high valence correlation indicates reliable separation of positive and
negative language, while arousal remains harder to predict. Even before encoder unfreezing, the
base RoBERTa model slightly outperforms an emotion-aware GoEmotions counterpart (MAE 0.0895
vs. 0.0946), suggesting that explicit emotion context neither speeds convergence nor sharpens VA
discrimination. A zero-shot GPT-04-mini baseline scores lowest on all metrics, underscoring the
need for fine-tuning with VA-annotated examples.
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Table 2: PHQ-8 prediction on baseline transcripts

Metric Base GPT AutoCoT  Supervised Fine-Tuned GPT
Baseline — Without VA

MAE 4.001 4.427 3.661
RMSE 5.513 6.257 4.520
With VA

MAE 3.768 3.938 3.214
RMSE 5.174 5.437 4.520

Table 3: Best MAE Achieved by Each Model Across All Experiments

Model Condition Best MAE
Base GPT With VA, baseline transcripts 4.036
AutoCoT Without VA, baseline transcripts (n = 4) 3.916
Supervised Fine-Tuned GPT  With VA, baseline transcripts 3214

Continuous valence—arousal (VA) features consistently lower error (Table[2): Base GPT MAE | 5.8%
and RMSE | 6.1%, AutoCoT MAE | 11.0% and RMSE | 13.1%, and supervised fine-tuned GPT
MAE | 12.2% with no RMSE penalty. Even in strong few-shot settings, the fine-tuned + VA model
remains best (MAE 3.214; Table[3).



We tested GPT summarization as a baseline compression method (see Appendix [D). Although
adding VA improved summaries by 9.3%, these VA-enhanced summaries still underperformed VA-
augmented full transcripts, indicating that compression loses diagnostic information. Even our best
summarization approach fell short of the supervised fine-tuned model, confirming that complete
context and task-specific training are essential.

Our core finding is that continuous valence—arousal (VA) features provide a lightweight yet consis-
tently informative signal for PHQ-8 prediction from text, modestly improving PHQ-8 estimation
across GPT-based models. These improvements demonstrate that even a low-dimensional affec-
tive signal can supplement linguistic content when predicting depressive-symptom severity in large
foundational models.

Another important finding is that most pruning strategies—based on length, summarization, or VA
thresholds—uniformly degrade performance. This suggests three insights:

1. Preserve conversational flow. Short utterances and neutral lines still carry diagnostic cues (pauses,
hesitations, shifts in affect) that VA amplifies, but that are lost when context is truncated.

2. Quality over quantity of demonstrations. In the AutoCoT few-shot pipeline, reducing to four
high-quality demos outperformed larger sets, underscoring the fragility of rationale-based prompting
in clinical tasks.

3. Modeling trade-offs. While supervised fine-tuning yields the best overall performance, VA-
augmented zero- and few-shot methods remain competitive, offering rapid deployment when labeled
data are scarce.
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Figure 4: Valence-arousal trajectories by gender and depression status. Color progression from early
(red) to late (blue) conversation evolution. Depressed groups show more negative valence excursions.

Even short, neutral exchanges carry subtle linguistic and affective cues—hesitations, tone shifts,
self-reflective remarks—that the network uses to gauge depressive severity. Clinically, removing
these fragments erases important indicators of mood fluctuation and engagement, limiting the model’s
ability to form a holistic understanding of the patient’s emotional state. Future work should therefore



preserve the full transcript, including interviewer prompts, to capture complete context and maintain
conversational flow.

AutoCoT investigations revealed no consistent accuracy gains when varying demonstrations from
two to eight, except for a slight improvement in length-pruned conditions (4.952 — 4.454 MAE).
The best AutoCoT performance was achieved with just four carefully curated demos, underscoring
that clinical coherence and example quality matter far more than sheer quantity.

Beyond diagnostics, VA could enable therapeutic chatbots to generate emotionally calibrated re-
sponses by defining target VA coordinates for different clinical scenarios. For instance, when
users present with low valence and high arousal (anxiety), the chatbot could target responses at
valence = 0.2, arousal = —0.3 to provide gentle reassurance while lowering activation. Con-
versely, for low-valence, low-arousal states (depression), a target of valence = 0.1, arousal = 0.2
could offer mild encouragement without overwhelming the user. The system would constrain token
sampling during generation to maintain trajectories toward these therapeutic targets while continu-
ously monitoring user VA to adjust dynamically, creating an adaptive feedback loop in which both
the current emotional state and desired therapeutic direction guide response generation.

5.3 Exploration of VA patterns with PHQ-8

To explore how valence—arousal (VA) patterns evolve during clinical interviews, we visualized
average VA trajectories across conversation steps for different demographic and diagnostic groups.
Figure [ presents these trajectories in two-dimensional space with color-coded progression, whereas
Figure [6|shows separate time-series plots of valence and arousal.

Figure [ reveals distinct group-level patterns. Non-depressed participants remain largely in neutral
territory: females drift toward higher valence, and males shift toward higher arousal and positive
valence by the interview’s end.

Depressed participants exhibit markedly different dynamics. Females enter negative-valence territory
early and remain in low-arousal, negative regions, whereas males display fluctuating paths with
negative-valence excursions at higher arousal. Both depressed groups cluster in the third quadrant
(negative valence, negative arousal), corresponding to sadness in VA space. More detailed discussion
is in Appendix [H]

These trajectories demonstrate that VA dimensions capture meaningful emotional dynamics differ-
entiating depressed from non-depressed individuals. Depression is characterized by lower average
valence and distinctive temporal patterns during clinical interactions, supporting VA’s utility as a
continuous monitoring metric for mental-health applications.
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Table 4: PCL-5 prediction on baseline transcripts

Metric Base GPT AutoCoT Supervised Fine-Tuned GPT
Baseline — Without VA

MAE 14.870 12.532 8.963
RMSE 18.068 16.712 13.077
Accuracy (%) 62.5 66.3 72.7
With VA

MAE 15.833 14.120 9.648
RMSE 18.893 17.812 14.566
Accuracy (%) 73.2 68.2 78.0
Random noise as VA

MAE 15.759

RMSE 20.279

Accuracy (%) 67.6




The addition of VA to transcripts improved the accuracy of binary PTSD predictions across all
GPT-based models in our experiments (Table 4). The most significant improvement was seen with
Base GPT where adding VA improved accuracy by 10.7%. We considered the possibility that the
improvement might be due to VA values injecting random noise into the prompt, which has been
shown in some cases to improve LLLM performance by reducing bias in the attention mechanism
(Zhao et al.| [2021)). However, when we presented random noise in the range [-1, 1] as VA, we saw just
a 5.1% improvement in accuracy, and therefore semantic understanding of VA was likely improving
the prediction of self-reported PTSD. This is supported by psychiatric studies on PTSD showing an
association between VA (self-reported or measured by fMRI) and PTSD symptom severity in patients
(Shin et al.l 2005)(Lanius et al., 2016).

Figure [/| shows that non-PTSD participants of both genders maintain near-neutral valence and
relatively flat arousal, whereas PTSD-positive individuals exhibit more frequent negative valence
dips and larger arousal swings, most pronounced in males. Detailed discussion is in the appendix.

That said, we were surprised that the addition of VA did not improve MAE or RMSE across the
GPT-based models and was usually associated with higher error than transcripts alone. We observed
that for transcripts with VA, the models were responding with a small set of PCL-5 scores, while for
transcripts alone, the models would output across a larger range of scores in the PCL-5 scale. These
findings, together with the accuracy metrics on the binary classification task, suggest that VA might
be more useful for the prediction of few, discrete classes. Future studies could explore if calibrating
mental health scales, for example discretizing scales using thresholds, could improve the utility of
VA.

We hypothesized that few-shot prompting with AutoCoT could help the GPT model develop insight
into how VA relates to PTSD, but surprisingly the addition of VA features provided just a 1.9%
accuracy improvement and a worsening of MAE and RMSE on PCL-5. This is contrary to our results
on AutoCoT for depression where VA reduced MAE and RMSE of PHQ-8 scores. We experimented
with AutoCoT few-shot prompting using summarized, length-pruned, and VA-pruned transcripts
(Appendix I) as highlighted in but none were able to improve the utility of VA. Therefore,
the benefit of few-shot prompting for learning VA features might depend on the disease context.

Supervised fine-tuned (SFT) GPT on the DAIC-WOZ train set achieved the highest performance
in both PCL-5 score and accuracy, followed by AutoCoT and Base GPT. This makes sense given
the SFT model had seen the highest number of examples and had its weights explicitly updated.
Although our goal was to evaluate performance on prompts with VA versus text alone, we were
impressed with the absolute performance of the SFT model with VA features, which exceeds the
best reported accuracy (75.8%) for GPT-04-mini (Ali et al., 2024) and achieves similar accuracy to
domain-specific models based on random forest regression on sentiment features (Sawalha et al.|
2022)). Future studies could evaluate if supervised fine-tuning can preserve the foundational ability of
GPT across mental health conditions — starting with how well the PTSD fine-tuned GPT may transfer
to prediction of depression scores and vice versa.

6 Conclusion

We introduced a unified, two-dimensional valence—arousal framework that generalizes across depres-
sion and PTSD prediction tasks without disorder-specific retraining. Our best ROBERTa regressor
achieved 0.0759 MAE on continuous VA estimation, and augmenting clinical transcripts with these
affective signals yielded up to 12.2% MAE reduction for PHQ-8 and 10.7% accuracy gain for PTSD
classification. Temporal VA trajectories further revealed distinct emotional dynamics in depressed and
PTSD-positive individuals, underscoring the value of continuous affect monitoring. By decoupling
affective representation from specific diagnoses, our approach paves the way for scalable, real-time
mental health screening and personalized intervention in diverse clinical settings.

7 Contributions
* Miko formulated the psychiatric framing, identified valence—arousal (VA) as a foundational
signal, and ran the PHQ-8 prediction experiments with VA input.

» Kevina led prompt-engineering studies, analysing VA sensitivity to transcript length and
content.



* Christo developed the VA-regression models, contrasting GoEmotions and EmoBank pre-
training regimes.

* Yalcin processed experimental outputs and designed the 2-D VA-trajectory visualisations of
depressive progression.

* Ton implemented the PTSD benchmark, demonstrating VA’s utility across two clinical
conditions and broadening the study’s scope.

All authors discussed the results, contributed to the manuscript, and approved the final submission.

References

Abdelrahman A. Ali, Aya E. Fouda, Radwa J. Hanafy, and Mohammed E. Fouda. Leveraging
audio and text modalities in mental health: A study of LLMs performance. arXiv preprint
arXiv:2412.10417, December 2024. URL https://arxiv.org/abs/2412.10417v1. version
v1, submitted Dec. 9 2024.

Margaret M. Bradley and Peter J. Lang. Measuring emotion: The self-assessment manikin and
the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1):
49-59, 1994. ISSN 0005-7916. doi: https://doi.org/10.1016/0005-7916(94)90063-9. URL
https://www.sciencedirect.com/science/article/pii/0005791694900639.

Sergio Burdisso, Ernesto A. Reyes-Ramirez, Esat Villatoro-Tello, Fernando Sanchez-Vega, A. Pastor
Lépez-Monroy, and Petr Motlicek. Daic-woz: On the validity of using the therapist’s prompts
in automatic depression detection from clinical interviews. arXiv preprint arXiv:2404.14463,
vl1, April 2024. URL https://arxiv.org/abs/2404.14463v1, License: arXiv.org perpetual
non-exclusive license.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. GoEmotions: A dataset of fine-grained emotions. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4040—4054, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.aclaASmain.372. URL https://aclanthology.org/2020,
acl-main.372/.

Roger Garriga, Javier Mas, Semhar Abraha, Jon Nolan, Oliver Harrison, George Tadros, and Aleksan-
dar Matic. Machine learning model to predict mental health crises from electronic health records.
Nature Medicine, 28(6):1240-1248, 2022. ISSN 1546-170X. doi: 10.1038/s41591-022-01811-5.
URL https://doi.org/10.1038/s41591-022-01811-5,

Global Burden of Disease 2017 Collaborators. Global, regional, and national incidence, prevalence,
and years lived with disability for 354 diseases and injuries for 195 countries and territories,
1990-2017: a systematic analysis for the global burden of disease study 2017. The Lancet,
392(10159):1789-1858, 2018. ISSN 0140-6736. doi: 10.1016/S0140-6736(18)32279-7. URL
https://www.sciencedirect.com/science/article/pii/S0140673618322797,

Jonathan Gratch, Ron Artstein, Gale M. Lucas, Georgia Stratou, Stefan Scherer, Arno Nazarian, Robin
Wood, Jill Boberg, David DeVault, Stacy Marsella, and David R. Traum. The distress analysis
interview corpus of human and computer interviews. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC), pages 3123-3128, Reykjavik, Iceland,
May 2014.

Yanrong Guo, Jilong Liu, Lei Wang, Wei Qin, Shijie Hao, and Richang Hong. A prompt-based
topic-modeling method for depression detection on low-resource data. IEEE Transactions on
Computational Social Systems, 11(1):1430-1439, 2024. doi: 10.1109/TCSS.2023.3260080.

jackksoncsie. Emobank: A corpus of 10k english sentences annotated with emotion (vad). https://
www.kaggle.com/datasets/jackksoncsie/emobank, 2022. Kaggle dataset. Licensed under
CC-BY-SA 4.0. Accessed: 2025-06-08.

Shaoxiong Ji, Tianlin Zhang, Luna Ansari, Jie Fu, Prayag Tiwari, and Erik Cambria. Mentalbert: Pub-
licly available pretrained language models for mental healthcare. arXiv preprint arXiv:2110.15621,
2021. https://arxiv.org/abs/2110.15621,

10


https://arxiv.org/abs/2412.10417v1
https://www.sciencedirect.com/science/article/pii/0005791694900639
https://arxiv.org/abs/2404.14463v1
https://aclanthology.org/2020.acl-main.372/
https://aclanthology.org/2020.acl-main.372/
https://doi.org/10.1038/s41591-022-01811-5
https://www.sciencedirect.com/science/article/pii/S0140673618322797
https://www.kaggle.com/datasets/jackksoncsie/emobank
https://www.kaggle.com/datasets/jackksoncsie/emobank
https://arxiv.org/abs/2110.15621

Jiehui Jia, Huan Zhang, and Jinhua Liang. Bridging discrete and continuous: A multimodal strategy
for complex emotion detection. arXiv preprint arXiv:2409.07901, v1, September 2024. URL
https://arxiv.org/abs/2409.07901v1, License: CC BY 4.0.

Arun Kashyap. Mental health chatbot using roberta and gemini. https://github.com/
kashyaparun25/Mental-Health-Chatbot-using-RoBERTa-and-Gemini, 2024. GitHub
repository. Accessed: 2025-06-08.

Ruth A. Lanius, Paul A. Frewen, Annie Vermette, Sarah Myers, Bernhard Brand, Margaret C.
McKinnon, Regan W. J. Neufeld, Britt Schuhmann, and Keith T. Brady. Emotional processing in
posttraumatic stress disorder: Heightened negative emotionality and related emotional numbing.
BMC Psychiatry, 16:24,2016. doi: 10.1186/s12888-016-0770-3. PMC4843505.

Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
on the reasoning performance of large language models, 2024. URL https://arxiv.org/abs/
2402.14848.

Michael Mitsios, Georgios Vamvoukakis, Georgia Maniati, Nikolaos Ellinas, Georgios Dimitriou,
Konstantinos Markopoulos, Panos Kakoulidis, Alexandra Vioni, Myrsini Christidou, Junkwang Oh,
Gunu Jho, Inchul Hwang aand Georgios Vardaxoglou, Aimilios Chalamandaris, Pirros Tsiakoulis,
and Spyros Raptis. Improved text emotion prediction using combined valence and arousal ordinal
classification, 2024. URL https://arxiv.org/abs/2404.01805.

Alireza Pourkeyvan, Ramin Safa, and Ali Sorourkhah. Harnessing the power of hugging face
transformers for predicting mental health disorders in social networks. IEEE Access, 12:
28025-28035, 2024. ISSN 2169-3536. doi: 10.1109/access.2024.3366653. URL http:
//dx.doi.org/10.1109/ACCESS.2024.3366653.

Fabien Ringeval, Bjorn Schuller, Michel Valstar, Nicholas Cummins, Roddy Cowie, Leili Tavabi,
Maximilian Schmitt, Denis Lalanne, Maja Pantic, Mihalis A. Nicolaou, et al. AVEC 2019 workshop
and challenge: State-of-mind, detecting depression with ai, and cross-cultural affect recognition.
In Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, pages
3-12. ACM, 2019. doi: 10.1145/3347320.3357688.

Misha Sadeghi, Robert Richer, Bernhard Egger, Lena Schindler-Gmelch, Lydia Helene Rupp, Farnaz
Rahimi, Matthias Berking, and Bjoern M. Eskofier. Harnessing multimodal approaches for
depression detection using large language models and facial expressions. npj Mental Health
Research, 3:66, 2024. doi: 10.1038/s44184-024-00112-8. URL https://www.nature.com/
articles/s44184-024-00112-8. Published 23 December 2024, License: CC BY 4.0.

Jeff Sawalha, Muhammad Yousefnezhad, Zehra Shah, Matthew R. G. Brown, Andrew J. Greenshaw,
and Russell Greiner. Detecting presence of ptsd using sentiment analysis from text data. Frontiers
in Psychiatry, 12:811392, February 2022. doi: 10.3389/fpsyt.2021.811392. URL https://www,
frontiersin.org/articles/10.3389/fpsyt.2021.811392/full.

Lisa M. Shin, Christopher I. Wright, Paul A. Cannistraro, Michelle M. Wedig, Katherine McMullin,
Brian Martis, Michael L. Macklin, Natasha B. Lasko, Sarah R. Cavanagh, Terri S. Krangel, Scott P.
Orr, Roger K. Pitman, Paul J. Whalen, and Scott L. Rauch. A functional magnetic resonance
imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful
faces in posttraumatic stress disorder. Archives of General Psychiatry, 62(3):273-281, March 2005.
doi: 10.1001/archpsyc.62.3.273. PMID: 15753240.

Ala N. Tak and Jonathan Gratch. Gpt-4 emulates average-human emotional cognition from a
third-person perspective. arXiv preprint arXiv:2408.13718, v1, August 2024. URL https:
//arxiv.org/abs/2408.13718v1l License: CC BY 4.0.

Yuqing Wang, Yun Zhao, Sara Alessandra Keller, Anne de Hond, Marieke M. van Buchem, Malvika
Pillai, and Tina Hernandez-Boussard. Unveiling and mitigating bias in mental health analysis
with large language models. arXiv preprint arXiv:2406.12033, v2, June 2024. URL https:
//arxiv.org/abs/2406.12033v2. License: CC BY-NC-SA 4.0.

Zhiting Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Improving
few-shot performance of language models. arXiv preprint arXiv:2102.09690, 2021. URL https:
//arxiv.org/abs/2102.09690.

11


https://arxiv.org/abs/2409.07901v1
https://github.com/kashyaparun25/Mental-Health-Chatbot-using-RoBERTa-and-Gemini
https://github.com/kashyaparun25/Mental-Health-Chatbot-using-RoBERTa-and-Gemini
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2402.14848
https://arxiv.org/abs/2404.01805
http://dx.doi.org/10.1109/ACCESS.2024.3366653
http://dx.doi.org/10.1109/ACCESS.2024.3366653
https://www.nature.com/articles/s44184-024-00112-8
https://www.nature.com/articles/s44184-024-00112-8
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.811392/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2021.811392/full
https://arxiv.org/abs/2408.13718v1
https://arxiv.org/abs/2408.13718v1
https://arxiv.org/abs/2406.12033v2
https://arxiv.org/abs/2406.12033v2
https://arxiv.org/abs/2102.09690
https://arxiv.org/abs/2102.09690

Michael Zimmerman. The value and limitations of self-administered questionnaires in clinical practice
and epidemiological studies. World Psychiatry, 23(2):210-212, 2024. doi: 10.1002/wps.21191.
URL https://doi.org/10.1002/wps.21191.

12


https://doi.org/10.1002/wps.21191

A AutoCOT Rationale Generation Prompt

You are a clinical psychologist. You read transcripts of a patient
from a diagnostic interview and estimate the PHQ-8 score (0-24) by
reasoning through what the participant said. You will be given what
the patient said line by line. Return only your reasoning - do not
include the final score.

In the VA case, the prompt is edited as follows:

You will be given what the patient said line by line, along with the
valence and arousal score (-1 to 1) for that line.

Specifically, we use the following prompt template for each transcript:

N=8 demo prompt.

Q: You are a clinical psychologist. You read transcripts of a
patient from a diagnostic interview and estimate the PHQ-8 score
(0-24) by reasoning through what the participant said. You will be
given what the patient said line by line

Evaluate the patient’s total PHQ8 score

{formatted test transcript}

A: Let’s think step by step. After analyzing the transcript, you
MUST output the score in this exact format:

PHQ_8Total: [scorel

Again, make sure to output the score in the above format.

Again, In the VA case, the prompt is edited as follows:

You will be given what the patient said line by line, along with the
valence and arousal score (-1 to 1) for that line.
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B Summary of All AutoCOT Experiments

MAE by Pruning Method and Number of Demos
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Figure 5: Aggregation of PHQ-8 MAE AutoCOT variations across 1) with or without VA 2) Pruning
mechanism — baseline, summary, length, va, and 4) Number of demos —n =2, 4, 6, 8.

C Experiment 1: Summary — Example summarized transcript

Example Utterance with VA (Verbatim):
“I don’t know I’m just in a happy mood today’’
Valence: 0.3847  Arousal: 0.1264

Summary Line with VA:

‘“The transcript contains many brief acknowledgments and casual
comments (e.g., ‘okay,‘ ‘yes,‘ comments about Mexico, weather,
crime, music, Burger). The client reports writing poetry and
aspirations to become a famous poetry writer. She dropped out in
11th grade. About a week ago she had an argument with her husband
over cigarettes; he wants to quit smoking and she doesn’t. She
has a history of drug addiction, received help from her husband,
feels better now, and previously overdosed on pills. She is

not participating in therapy at this time and is uncomfortable
discussing some topics. She experiences hypersomnia (‘sleep too
much‘) and uses music and erotic poetry as coping strategies.
Overall, she describes feeling happier, more outgoing, occasionally
cranky, and in a generally positive mood today.”’

Valence: 0.0414  Arousal: -0.0075
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D Experiment 1: Summary — Results

Table 5: PHQ-8 prediction using summary transcripts: Base GPT vs. AutoCoT

Metric Base GPT AutoCoT
Without VA — Baseline

MAE 4.667 6.000
RMSE 5.994 7.330
With VA

MAE 4.036 4.500
RMSE 5.379 6.619

E Experiment 2: Prune by Length — Results

Table 6: PHQ-8 prediction using length-pruned transcripts: Base GPT vs. AutoCoT

Metric Base GPT AutoCoT
Without VA — Baseline

MAE 4.107 4.454
RMSE 5.369 6.052
With VA

MAE 4.125 4.182
RMSE 5.433 5.788

F Experiment 3: Prune on VA — Results

Table 7: PHQ-8 prediction using VA-pruned transcripts: Base GPT vs. AutoCoT

Metric Base GPT  AutoCoT
Without VA — Baseline

MAE 5.679 4.395
RMSE 7.711 6.144
With VA

MAE 5.696 4.343
RMSE 7.784 5.846

G Experiment 4: Vary Number of Demos — Results

Table 8: PHQ-8 prediction across varying number of demos in AutoCOT

# Demo Texts  AutoCoT (without VA)  AutoCoT (with VA)

MAE RMSE MAE RMSE
2 3.942 5.645 4.198 5.829
4 3.916 5.637 4.234 5.872
6 3.947 5.683 4.267 5.999
8 3.967 5.663 4.368 6.067
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H Visualization of Dynamics of VA over Time Steps
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Figure 6: Temporal evolution of mean valence (blue) and arousal (orange) throughout clinical
conversations by demographic-diagnostic groups. Depressed participants show more volatile patterns
with frequent negative valence dips.
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Figure 7: Evolution of mean valence (blue) and arousal (orange) over interview steps for participants
with and without PTSD, separated by gender. PTSD-positive individuals exhibit more pronounced
negative valence swings and greater arousal variability compared to their non-PTSD counterparts.
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In PHQ8 dynamics, Figure[d] presents VA trajectories as paths through the two-dimensional emotional
space, with colors indicating progression from early (red) to late (blue) conversation steps. Several
notable patterns emerge when comparing groups stratified by gender and depression status.

Non-depressed participants (PHQ Binary 0) show relatively contained trajectories that generally
remain within neutral emotional territory. The female non-depressed group exhibits a trajectory that
starts near neutral and moves slightly toward positive valence regions as the conversation progresses.
The male non-depressed group demonstrates a more dramatic shift, with the trajectory moving from
neutral territory toward higher arousal and positive valence regions by the end of the interview.

Depressed participants (PHQ Binary 1) display clearly different trajectory patterns. The female
depressed group shows a path that moves into negative valence territory early in the conversation
(red points) and tends to remain in lower-arousal, negative-valence regions throughout the interaction.
The male depressed group exhibits a more fluctuating trajectory with several excursions into negative
valence regions, although with somewhat higher arousal levels than their female counterparts. A
common pattern seen in both male and female depressed groups is dense clustering around the
third quadrant (negative valence, negative arousal), which corresponds to the sadness region in VA
categorization.

Figure [6] provides a clearer view of how valence and arousal change over the course of conversations.
The step-by-step analysis reveals distinct temporal patterns.

For non-depressed females, valence fluctuates around neutral with occasional positive peaks, while
arousal remains relatively stable with moderate variability. Non-depressed males show a striking
pattern where both valence and arousal remain relatively stable throughout most of the conversation
but show dramatic increases toward the final steps, potentially reflecting positive engagement or relief
as the interview concludes.

Depressed females demonstrate consistently lower and more volatile valence patterns, with frequent
dips into negative territory throughout the conversation. Their arousal levels remain relatively stable
but tend toward the lower end of the range. Depressed males show more fluctuating valence patterns
with sharp negative changes, while their arousal levels demonstrate greater variability compared to
depressed females.

Figure [7)illustrates how emotional tone and activation shift throughout clinical interviews in relation
to PTSD status and gender.

Non-PTSD females maintain valence close to neutral, with only minor positive and negative fluc-
tuations; their arousal trace remains relatively flat, suggesting steady engagement without marked
emotional peaks. Non-PTSD males similarly display stable valence, though with a subtle upward
drift in the later steps, and a gently rising arousal curve toward the end of the conversation, perhaps
reflecting growing comfort or relief.

By contrast, PTSD-positive females show recurrent drops into negative valence, interspersed with
brief recoveries; their arousal profile also oscillates more sharply, indicating intermittent spikes of
physiological activation. PTSD-positive males demonstrate the most volatile patterns: valence swings
widely between neutral and negative, and arousal exhibits high amplitude peaks and troughs across
the interview. These dynamics suggest that PTSD is associated with less regulated affective responses
and heightened emotional reactivity during clinical dialogue.
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